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Abstract

This paper presents the approach, algorithms and pro-
cesses we developed for the perception system of a

cross-country autonomous robot. After a presentation

of the tele-programming contezt we favor for interven-
tion robots, we introduce an adaptive navigation ap-

proach, well suited for the characteristics of complex
natural environments. This approach lead us to de-

velop an heterogeneous perception system that man-

ages several different terrain representations. The per-

ception functionalities required during navigation are
listed, along with the corresponding representations we
consider. The main perception processes we developed =

are presented. They are integrated within an on-board
control architecture we developed. First results of an

ambitious experiment currently lead at LAAS are then

presented.

1 Context - Introduction

A large amount of results exists today on mobile robot
navigation, most of them related to indoor environ-
mcnts. As for outdoor navigation, most of the works
concern environments wherein obstacles are rather

structured, and the terrain mostly flat (e.g. road

following [1]). More recently, studies considering au-
tonomous mobility in natural unstructured outdoor en-

vironments comes out [2] : several applications are
considered, such as public safety [3] (fire fighting,

chemical dist_ster...), sub-sea intervention or explo-
ration, and planetary exploration [4, 5].

Several aspects make these kinds of interventions a

demanding and difficult problem for robotics :

• The robot has to operate in a natural, unstructured,

maybe hostile and a priori unknown environment ;

• There might be interaction discontinuities with the
robot because of communication breakdowns, impor-

tant delays or low bandwidth ;

Copyright © 1993 American Institute of Aeronautics and
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• The information on the robot and the environment

is mostly acquired through the robot's own sensors.
: These constraints rule out direct teleoperation as well

as telerobotics approaches, and point towards robots

with important autonomous capacities : the envi-

ronment being poorly known and the communication

possibilities very poor, the mission can only be pre-
defined at a task-level in general, not in its every de-
tails. The robot must then build and maintain its own

representations of the environment, upon which it au-

tonomously reasons and plans the actions to perform
in order to fulfill the mission.

As opposed to behavior-based control schemes [6], we
favor the development of a global architecture with two

main parts to tackle this challenge [7, 2] : an operating
station for mission programming and supervision, and
a remote robot system 1 able to interpret the mission
and execute it autonomously.
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Figure 1: The mobile robot ADAM in its environment

The operating station includes the necessary functions
that allow a human to (i) build an executable robotic

I not necessarily a single one.
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mission that can be interpreted and executed by the
robot, (as opposed to a higher level description of ob-
jectives) ; and to (it) supervise its execution, tak-

ing into account the delays and communication con-
straints. Its presence essentially ensues from the fol-
lowing considerations :

* The mission is not defined once and for all : accord-

ing to returned data, one should be able to change
the objectives of the mission (when unexpected events

occur for instance) or to decide the execution of a par-
ticular action (such as "pick this sample" in the case

of a scientific exploration).
• The robot could fall into difficult situations wherein

its own capacities are insufficient, a human interven-

tion would then be necessary for troubleshooting.

As for the robot, its autonomy essentially relies on its
ability to build faithful representations of its environ-

ment, which is obviously necessary for him to interpret

the mission and decompose it into executable tasks,
considering its actual context.

We focus in this paper on the development and organi-
zation of the perception functionalities an autonomous

cross-country robot must be embedded with. The
following sectlon introduces the general adaptive ap-
proach we chose to tackle with outdoor environment

navigation, that emphasizes the need to develop sev-
eral perception processes. Section 3 presents the dif-

ferent perception functionalities required during navi-
gations, and the corresponding terrain representations

maintained by the robot. The processes we devel-

oped to build these representations are presented in
section 4, and the way they are controlled and inte-
grated within the context of our robot architecture is

presented in section 5. We finally describe the first

results of the EDEN experiment, currently developed

at LAAS with the mobile robot ADAM s (figure 1).

2 A Multi-Purpose Perception

System for Adaptive Navigation

The complexity of outdoor natural environments

comes essentially from their diversity and lack of struc-

ture : some areas can be totally flat (maybe cluttered
with easily detectable obstacles - big rocks lying on a
prairie for instance), whereas others area can be much

more cluttered, such as a landscape of smooth hills
(sand dunes) or an uneven rocky area. This variety in-

duces several different behaviors, and constrains both

the perception and motion planning processes.

According to a general economy of means principle
(on-board processing capacities, memory and time are

always limited), we favor an adaptive approach [8, 9] :

UADAM : Advanced Demonstrator for Autonomy and Mo-
bility, is property of Framatome and Matra Marconi Space, cur-
rently lent to LAAS.

we aim at adapting the robot behavior of the robot to

the nature of the terrain, and hence three navigation
modes are considered :

• And a reflex navigation mode : on large flat and
lightly cluttered zones, the robot locomotion com-

mands are determined on the basis of (i} a goal and
(it) the information provided by "obstacle detector"
sensors.

• A 2D planned navigation mode : it relies on

the execution of a planned 2D trajectory, using a
binary description of the environment in terms of

Crossable/Non- Crossable areas.

• A 3D planned navigation mode : this mode re-
quires a precise model of the terrain, on which a fine
3D trajectory is planned and executed.

Each of these navigation mode is suitable for a par-

ticular terrain configuration, and requires a specific

representation. Besides this trajectory planning func-
tionalities, there are some other important processes
that also require a representation of the terrain : exte-

roceptive localization, often required to refine or cor-

rect the estimation of the robot position provided by
its internal sensors ; and navigation planning, which

is in charge of intermediate goal and navigation mode
selection.

Several authors emphasized on the development of per-
ception and motion planning processes able to deal

with any terrain configuration [10, 11], trying to re-
cover as much information as possible from the ac-
quired 3D data. Besides the processing complexity,
such an approach has a main drawback : it does not

takes advantage of the variety of the environment. Al-

though sometimes needed, the recovery of a complete
and accurate 3D geometrical model may be often not

necessary : more simple and approximative represen-
tations will be sufficient in many situations, when the
terrain is mostly flat for instance.

We believe that aiming at building such a "univer-
sal" terrain model is extremely difficult and not effi-
cient, and we therefore chose to endow the robot with

a multi-level terrain modeling capacity : a particu-
lar representation is built or updated only when re-

quired by a given task. This involves the development

of various perception processes, each of them being
dedicated to the extraction of specific representations
( mulli-p_Lrpose perception).

At each step of the incremental execution of its mis-
sion, the navigation planner autonomously chooses an

intermediate goal, along with the navigation mode to

apply to reach it. This induces the choice of the repre-
sentations it must update, which comes to answering
these questions : which sensor to use ? With what

operating modalities ? How should the data be pro-
cessed ? Perception planning becomes in our case a
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keycomponentto enhancetherobotautonomyand
efficiency.
To achievethis,weproposeto buildandupdatesys-
tematicallya global qualitative description of the envi-
ronment on which all "strategic" decisions are taken.

This representation is built thanks to a fast analysis
of the raw 3D data acquired (either by a Laser Range

Finder - LRF - or by a stereovision correlation algo-

rithm), that provides a terrain description in term of
navigation classes, and some other qualitative informa-
tions, such as the possible presence of a landmark, the
mean altitude and slope of some areas... Each time

this representation is updated, it is structured in or-

der to produce a semantically significant model, from
which navigation and perception plans are deduced.

3 Terrain Representations

After a brief presentation of the perception function-
alities and the constraints brought by outdoor envi-

ronments, we introduce in this section a multi-level

environment model, that defines the relations between

the various representations.

3.1 Outdoor Representations : character-
istics and constraints

The difficulty of representing outdoor environments
comes essentially from the fact that they are not in-

trinsically structured, as compared to indoor environ-
ments where simple geometric primitives match the re-

ality. As a consequence, any representation based on

geometric primitives (linear or second degree surfaces,
super-quadrics...) is difficult to build and to maintain,
and introduces an approximation of the reality via ar-
tificial structures. We therefore favored the develop-

ment of simpler representations (polygonal maps, ele-
vation maps...), easier to build and manage. Semantic
informations are not explicitly contained in such rep-

resentations, but can anyhow easily be extracted.

The other characteristics of the representations are re-
lated to the robot sensors and mission :

• The sensors are always imperfect : their data are in-

complete (lack of information concerning existing fea-

tures) and not precise. They generate artifacts (in-
formation on non-existing features) and errors (wrong

information concerning existing features). The same

area when perceived again can therefore be differently

representcd. IIence environment representations must
tolerate important variations [12].

• The environment is initially unknown (or very poorly

known) and is incrementally discovered : the robot
must be able to manage local momentary representa-

tions, and merge them in global descriptions of the
world. We are convinced that global representations

are required [13], especially to recover from deadlocks

that often appears when dealing only with local rep-

resentations.

Finally, one must not forget that the system memory is

limited, and so the representations must be as compact

as possible.

3.2 Perception Functionalities and Corre-

sponding Representations

3.2.1 Trajectory Planning

From the poorest to the richest, here are the repre-
sentations required by the three navigation modes we

retained :

• Reflex Navigation : The robot locomotion com-
mands are determined on the basis of (i} a target value

(heading or position) and (it) the information provided

by "obstacle detector" sensors. An obstacle avoid-
ance procedure enables the robot to move safely, and
the area to cross is essentially obstacle-free, so that

there are poor chances that the robot fall into dead-
locks. Strictly speaking, this mode does not requires

any modeling of the terrain, but a description (a sim-

ple 2D polygon in our case) of a zone where it can be

applied.
• 2D planned navigation : This mode is applied on

lightly cluttered environments, that can be represented

by a binary description in term of Crossable / Non-
Crossable areas. The crossable zones are the places
where the robot attitude is not constrained, ie. where
the terrain is mostly flat, or has an admissible slope for

the robot to run safely, whatevcr its heading position

is. A trajectory defined by a sequence of 2D positions

is planned within the crossable areas. In our case,
the 2D planner requires a binary bitmap description,
on which a distance propagation method (similar to

those presented in [14]) produces a Voronoi diagram.

• 3D planned navigation : On uneven or highly
cluttered areas, the "obstacle" notion is closely linked
with the constraints on the robot attitude, and there-

fore constrains the robot heading position. Planning

a trajectory on such areas is a much more difficult

task [15] that requires a detailed modeling of the ter-
rain. In our case, the 3D planner builds its own data
structure on the basis of an elevation map, computed

on a regular Cartesian grid (section 4.4).

3.2.2 Localization

The internal localization sensors of the robot (odome-

try, inclinometers, inertial platform...) generate cumu-
lative errors, especially on uneven or slippery areas. A

localization procedure based on exteroceptive sensors
is often necessary for both the robot and tile super-

vising operator : to plan safe trajectories on formerly

perceived areas for instance, the robot obviously needs
to know precisely where it stands ; and a false position

value may mislead the operator.
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Suchalocalizationprocedurerequiresaspecificglobal
representation of the environment, be it a set of 3D
points in the case of a correlation-based localization

(iconic matching [16]), or a global map of detected

landmarks (that must then be modeled, using partic-
ular geometric descriptions) in the case of a feature-

based localization [17]. These two kinds of represen-
tations can be viewed as maps of interesting zones for

the purpose of localization. In our case, we developed
an original localization procedure (section 4.5), that
requires a B-Spline based model of the terrain.

We are also currently investigating the modeling of

unstructured objects (rocks, bushes...) thanks to com-
plex geometric primitives (super-quadrics [18]) : such

a model could be used to perform landmark detection,
and might provide a "qualitative" localization func-

tionality, sufficient in reflex navigation mode.

3.2.3 Navigation Planning

Navigation planning consists essentially in the de-

termination of an intermediate goal, as well as the

mode to activate to reach it, considering the mis-

sion's objective and the partial (and unprecise) knowl-
edge the robot has on its environment. Several dif-

ferent constraints can be taken into account to per-
form this "route" planning, depending on the con-

text : one'may prefer execute safe trajectories from

the localization point of view, or one may choose
the fastest trajectories (time constraint), the shortest

(energy constraint)... A semantic significant descrip-

tion of the perceived environment is here necessary.

We have chosen a topological connection graph (sec-
tion 5.2.2) : such a structure can contain very rich

informations, and a theoretical formalism, often ap-
plied in the robotic community [19], is available for its
exploitation.

3.2.4 Perception Planning

Perception planning, which is closely linked to navi-

gation planning, requires a prediction ability : given a
sensor and a point of view, what can be perceived ? To
answer this question, the perceptual constraints of the

sensor (occlusion, field of view, specularity) must be
checked considering an environment numerical model.

3.3 A Structural Scheme

Several data structures that represent the same enti-

ties in the en_:ironment must coexist in the system.

In this multi-layered heterogeneous model, the differ-

ent representations are easily managed and a global
consistency can be maintained. The relationships be-
tween the various representations explicit their build-

ing rules, and defines a constructive dependency graph
between them. The figure 2 illustrates these relation-

ships : each thin arrow represents a data processing al-
gorithm, and the thick straight arrows corresponds to

the production of a structure required to a trajectory
planner. We distinguish two kinds of dependencies :

• Systematic dependencies : Every time a representa-
tion is updated, all the representations that systemat-

ically depends on it (arrows labeled "S") are updated.
As one can see on the figure, every time 3D data are

acquired, the global bitmap representation, the region
representation and the connection graph are updated.
Let's also note that when a localization model is avail-

able, the informations it contains are merged in the
connection graph (section 5.2.2).

• Controlled dependencies (labeled "C") :The repre-
sentations that are not always necessary are only built

under control of the navigation planner. For instance,
an elevation is only required to cross an uneven zone.

The top level of this heterogeneous model is a

"bitmap" description of the environment, built upon
the results of the fast terrain analysis algorithm. A lot

of information is available in every pixel of this bitmap,
such as the terrain label and its confidence level, the

estimated elevation, the identification of the region it
belongs to... We have chosen such a structure for the

following reasons : it is simple, rich, adapted to the
lack of geometrical structure of the environment and

to the Digital Elevation Map description (section 4.4),
and flexible, in the sense that any supplementary in-
formation can easily be encoded in a pixel without re-

configuring the entire description and the algorithms
that use it. Moreover, the techniques that allow to

extract structured informations (regions, connexity...)
from a bitmap are well known and easily implemented.

3.4 Memory Management

The main drawback of maintaining global representa-

tions is memory occupancy, that rapidly becomes huge
if they covers large areas, especially when using bitmap
representations and elevation maps. To cope with this,
we are currently developing a "forgetting" functional-
ity : the area surrounding the robot, with a size limited

by the sensor capacities, is fldly described, whereas the
remaining already perceived terrain is structured in a

more compact way. The key point here is to determine

the informations one must not forget : for the purpose

of long range navigation, we consider that only the
connection graph and the localization model are nec-
essary to maintain.

We consider two different ways to implement this : the

first one is to take advantage of the global bitmap re-
gion structuration, or of any other classical data com-

pression method. The precise informations brought by

the possibly computed elevation maps is then totally
lost. The second way is to use the B-Spline based rep-
resentation : the B-Spline representation would then

be systematically built (in parallel with trajectory exe-

cution for instance). Only the B-Spline representation,
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Figure 2: The representations used in the system

which is extremely compact, and that contains much
more informations than the global bitmap representa-

tion, is kept in memory.

4 Building Representations

4.1 Fast Classification

Applied each time 3D data are acquired, this process
produces a description of the perceived areas in term
in terrain classes, along with some qualitative infor-

mations. It relies on a specific discretization of the

perceived area in "cells", on which different character-
istics that allow to label them are computed [9].

The discretization is the projection of a regular grid

defined in the sensor frame (fig. 3). Its main charac-
teristics are that it respects the sensor resolution, and

that it points out a "density" attribute : the number

of points of point contained in a cell, compared with
a nominal density defined by tile discretization rates,

provides a useful information concerning the area cov-
ered by the cell : for instance, it is equal to the nominal
density if the cell corresponds to a flat area. This in-

formation, along with other attributes concerning the

cells (mean altitude, variance on the altitude , mean
normal vector and corresponding variances) allows to

heuristically label each cell as one of {Flat, Slope, Un-

even, Obstacle, Unknown}.

This classification procedure, which complexity is

O(n), where n is the number of 3D points considered,

_'.." _!iii! i!i!!!iiiii!i::

Figure 3: Discretization in the sensor frame, and pro-

jectlon on the ground

takes around half a second on a Spare-10 workstation

to process a 10.000-points 3D image. It has proved
its robustness on a large number of different images

(fig. 4), produced either by the LRF or a stereovi-
sion correlation algorithm 3, and is especially weakly

affected by the sensor noise (uncertainties and errors).

An important point is that it is possible to estimate
a confidence value on the labeling of each cell : this

value generally decreases with the distance of the cell

to the sensor, because of the decreasing accuracy on a

3D point coordinates with this distance. But this con-
fidence also obviously depends on the label itself : for

instance, a flat cell containing a few erroneous points
can be labeled as an "uneven" one, whereas the prob-

ability that erroneous points perceived on an actu-

3The discretization then differs slightly from the one used for

LRF images
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Figure 4: Classification result on a complex scene.
From clear to dark : Unknown, Flat, Slope, Uneven,
Obstacle

ally uneven zone lead to a "flat" label is very low.
The quantitative estimations of this confidence value

P(error) = F(distance, label) are statistically deter-
-mined, and constitute the useful model of the logical

sensor "terrain classifier" (figure 5).

P(¢rror) Label

_ -.S----- Uneven/Obst.-,t------ Flat

tt

D-sensor (me|ers)

Figure 5: Error probability on the cell labeling

We are considering the application of a similar clas-
sification method on luminance images : global infor-

mation concerning the same cells in the camera frame

(color, texture...) should permit a fast determination
of the terrain nature, and therefore produce a more

significant description of the terrain. Another inter-

esting thing to consider is the detection of areas of

interest for the localization procedure (possible pres-

ence of landmarks or particular geometric features),
using the attributes determined for each cell.

4.2 Global Model Building

In the incrementally built bitmap structure that rep-
resents the global terrain model, all the informations

provided by the classification are encoded (label and
corresponding confidence, elevation, slope). Fusion of

the classifier output is a simple and fast procedure :
each cell is written in the bitmap using a polygon filling

algorithm. When a pixel has already been perceived,
the possible conflict with the new perception is solved

by comparing the label confidence values. This process
is illustrated in figure 6 : the area originally labeled

"obstacle" in front of the first position (left image) is

split into two smaller obstacle areas plus a flat area

when perceived from a smaller distance (right image).
Many experiments have proved the robustness of this
fusion method.
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Figure 6: Two steps of the global bitmap model build-
ing

4.3 Connection Graph Building

Once the global bitmap representation is updated, it

is structured in a "region model", thanks to classical

image processing algorithms. Regions are areas of uni-
form label, uniform mean altitude and uniform confi-

dence. If no precise geometrical informations are avail-

able in the description of a region, some useful qualita-
tive informations can anyway easily be extracted, such

as its surface or its including rectangle. A contour fol-
lowing algorithm provides all the neighborhood infor-

mations between the regions, that defines the topolog-
ical connection graph. A node of the graph is related
to the border between two regions, whereas an arc=cot -
responds to the crossing of a region. Section 5.2.2
presents different ways to valuate the graph, consid-
ering the regions' attributes.

4.4 Fine Modeling

When an uneven area has to be crossed, it must be

precisely modeled in order to plan a secure trajec-
tory. We use for that purpose a generic interpola-

tion method [20] that builds a discrete representation

z = f(x,y) on a regular Cartesian grid from a 3D
spherical image (p, 0, ¢) = f(i, j).

Local Elevation Map (LEM) Building

Our method relies on the analysis of all sets of four

neighboring points in the spherical image : they de-
fine patches in the Cartesian robot's redressed frame.
Thanks to the fine grid resolution, a planar approxima-

tion is sufficient to represent a patch. The interpola-
tion problem is then reduced to finding the intersection

between each (z, y) "vertical" line and the plane that

best approximate the patch. A test based on depth
discontinuities allows to decide whether a patch can
be interpolated or not, and leads to an estimation of

the elevation ZLo,_t for the (x, y) interpolated points.

An accuracy on each computed elevation is estimated,
using Jacobian matrix of the sensor model to estimate

2OO



varianceson therawCartesianmeasurements,anda
KalmanFilter to computevariancesontheplanepa-
rameters[21].
GlobalElevationMap (GEM) Building
A fusionof differentLEMin a globalelevationmap
maybeneededfor trajectoryplanningif theuneven
areacannotbeentirelyperceivedfromasingleview-
point. Oncetheestimationof thenewrobot'spo-
sitionis achieved(section4.5),wecombinethenew
LEMandtheformerGlobalElevationMapintoanew
globalmap.Thenewelevation(Zatob_)kafterthek _h

acquisition is updated by this ponderation equation :

Zo ZL

4.5 Localization Processes

Besides a localization process based on structured fea-

tures [17], we developed a localization process that re-
lies on a peak detection method [22], better suited for
unstructured environments.

The specific terrain representation used here is a B-

Spline surface based model, built upon an elevation
map thanks to a least-square approximation. Such a
model is very rich and compact, and provides a hierar-

chical description of the environment : a coarse level
B-Spline representation is first computed on a uni-

form mesh, and a test based on the least-square errors
points out the areas where some refinement is needed.
A new mesh with smaller size patches is then defined,

and a new B-Spline representation is computed, which

ultimately leads to a tree model, in which each node

corresponds to a B-Spline surface.

This analytic model allows to extract features such

as high curvature points, valleys or ridges. We cur-

rently only implemented a peak extraction procedure
based on a quick analysis of the matrix expression of

the B-Spline surfaces. Once the peaks are extracted,
we apply a feature matching localization method, co-

operating with an iconic one : the iconic method is
only performed in the neighborhood of the detected
features. Hence, using small correlation windows, we

avoid the long processing time usually encountered
with such methods.

5 System Architecture and Control

The generic control architecture for the autonomous
mobile robots developed at LAAS is organized into

three levels [23, 24]. It is instantiated in the case of
the EDEN experiment as shown in figure 7. The higher

task planning level plans the mission specified by the

operator in terms of tasks, with temporal constraints,
executable by the robot. This operating station level,

not currently used in the experiment, will be imple-
mented in an specific environment to validate our tele-

programming approach.
Let's describe here the functionM and decisional levels,

and the way they are integrated.

OPERATOR

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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..................................:;.:.2;.,.2:.:.2.I:.:.222227.-.'.;.:.2:..'.2.:222222222222222:....

_ F_scnos_

_ _ LEVEL

Figure 7: Global control architecture. Connections

between the modules at the functional level show data

flow.

5.1 The Functional Level

The Functional Level includes the functions for acting

(wheels, perception platform), sensing (laser, cameras,
odometry and inertial platform) and for various data

processing (feedback control, image processing, terrain
representation, trajectory computation, ...). To con-
trol robot functionalities and underlying resources, all

these functions are embedded into modules defined in

a systematic and formal way, according to data or re-
sources sharing. Thus, modules are servers which are
called via a standard interface, and allow to combine

or to redesign easily the functions [25]. These modules
can be viewed as a generalization of the logical sensor

concept [26].

Figure 7 shows the set of modules used for the exper-
imentation and the data flow during the progress of

an iteration. The connections are dynamically estab-
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lishedby thedecisionallevelaccordingtothecontext.
5.2 The Decisional Level
Thislevelincludesthenavigationplannerandasuper-
visorthatestablishesatrun-timethedependenciesbe-
tweenmodules.It alsocontrolstheirexecutionaccord-
ingto thecontextandtherobotstate,andinstallsthe
conditions/reactionsin caseofexternalevents(watch-
ingfor obstacleswhenexecutinga trajectoryfor in-
stance).In ourcurrentimplementation,thethreeen-
titiesof thedecisionallevelhavebeensimplifiedand
mergedtogether,usinga ProceduralReasoningSys-
tem[_7].

5.2.1 The Supervisor and the Executive

The supervisor receives the task to be executed, de-
scribed in terms of actions to be carried out and modal-

ities. If the task is not directly executable (typically
when the goal lies in an unknown area), the naviga-
tion planner refines it (section 5.2.2). The supervisor

watches for events (obstacles, time-out, etc.) and re-
acts to them as planned, according to the dynamics of

the situation and the state of the other running tasks.
It sends to the Executive the different sequences of
actions which correspond to the task, and sends back

to the operator the informations related to task (e.g.
specific data, and the report about its execution,etc.).

The executive launches the execution of actions by
sending the related requests to the functional level

modules. It manages the access to resources and the
coherence of multiple requests at the syntactic level,

and can take into account the parallelism of some se-
quences (watching for obstacles while moving toward

an intermediate goal for instance). It sends back to
the supervisor reports about the fulfillment of those
basic actions.

5.2.2 Navigation Planning

Generally speaking, the navigation planner uses pro-

cedures to carry out the task and decompose it into
executable elementary actions, on the basis of the cur-

rent environment and robot states. It is a key compo-
nent of the decisional level : mixing both procedural

knowledge and knowledge about the environment, it
perform the decisions that provide the robot with a

"smart" behavior. These decisions include perception
strategies, ie the choice and the definition of the differ-

ent perception tasks to perform, and motion strategies,

that imply the definition of intermediate goals and the
choice of navigation modes. The two problems are ob-

viously closely linked, but to avoid a great complexity,
we developed two independent techniques coupled af-
terwards.

Motion Strategies

The basic technique to plan a route in the known en-
vironment relies on the execution of an A*-like search

in the connection graph. This search selects a path,

i.e. a succession of connected regions, that defines the
intermediate goal and the motion mode to activate.

The valuation of the arcs (that connect the region bor-
ders) is obviously determinant to implement different

strategies. Our valuation is currently a heuristic mix
between these criteria :

• Arc label : to plan a route that minimizes the ex-

ecution time, the region label are taken into account.
The planner then avoids to cross uneven areas when

possible, since they require a fine modeling and a com-
plex trajectory planning.

• Arc confidence : considering only the former con-
straint, the artifacts raised by the classification proce-

dure (essentially badly labeled "obstacle" cells) would
mislead the robot navigation. The arc label criterion

is therefore pondered by its confidence, which allows
the planner to cross some obstacles areas for instance,

which actually triggers the execution of a new percep-
tion task when facing such areas.

• Altitude variation : For the purpose of energy

saving, one may wish to minimize the positive altitude
variations during trajectory execution, which increases

the cost of climbing hills for instance.

Finally, let's note that a localization ability value can

be taken into account while planning a route : from
the localization model and the global bitmap model,

landmarks (or interesting areas) visibility zones can be
quickly computed, which produces a structure similar
to a potential field. A localization ability value is then
associated to each node of the graph, and a path that

maximizes the sum of these values along the route can
be determined.

Using some pre-defined rules, an analysis of the search

result is then performed to define the next perceptual
need among the three following : localization, discov-

ery (perception of unknown area), and model refining
(re-classification of an already perceived zone from a

closest point of view or fine modeling).

Perception Strategies

Once the intermediate goal and the perceptual need

are defined, the next perception task is performed ac-

cording the following procedure [28] :

1. Perceptual constraint checking : characteris-

tics on the sensor (field of view, resolution) and on the
environment (visibility) constrains the observation ;

2. Prediction of the result of the perceptual task,
i.e. estimation of the information it can provide ;

3. And finally evaluation of the contribution of
the predicted task, in the context of the current need.

The main point here is to faithfully model the logical

sensor to use ("classifier", "peak extractor",...), as in
section 4.1.

As an example, let's examine a perceptual task selec-
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tion : supposethesearchin thegraphderivedaneed
toenhancetheconfidencevalueofacertainarea.From
theintermediategoalselected,thefollowingprocedure
isrun :

1. Foreachpixelof theglobalbitmapsurround-
ingthesensor(withintheLRFdistancelimit),thevis-
ibility constraintis checkedusingtheelevationvalue
encodedin thepixel;

2. Thecurrentconfidencelabel(Equalto zeroif
thepixelhasnotyetbeenperceived)of eachperceiv-
ablepixelis comparedto a theoretical"meanconfi-
dencevalue"thesensorcanbring(deducedfromthe
curvesof figure5). Thiscomparisonpermitsto esti-
matetheamountof informationthesensorcanpro-
vide.

3. Finally,theusefulnessof tilepredictedtaskis
estimated,andtheconsiderationof otherconstraints
(allowedtime,maximalsensorfieldof view...)defines
itsparameters,ie. perception direction, the LRF scan-
ning mode, the field of view...

6 The EDEN Experiment

All the concepts.and processes described in this paper
are currently being integrated in the context of the

"EDEN" experiment.

6.1 Experimental Test Bed

ADAM 4 has six motorized non directional wheels with

passive suspensions, and is equipped with a "percep-

tion head" composed of a 3D scanning laser range
finder with a deflecting mirror and two color cameras,

mounted on a 1-axis pan platform.

The on-board computing architecture is composed of
two VME racks running under the real time operating

system VxWorks. They are connected to the operat-
ing station (a Sun SparcStation 10-41) by an Ether-
net link. Tile first rack includes two 68030 CPUs and

various I/O boards, and is dedicated to internal local-

ization (thanks to odometry encoders and a inertial

platform) and locomotion
The second rack is composed of two 68040 CPUS, three

Datacube boards and some I/O. It is dedicated to sens-

ing activities : video image acquisition, laser range
finder command and acquisition, local processing of
data.

During the experiments, most of the "high level" com-
puting processes are run on the operating workstation
to take benefit of a better debugging environment and

of the pre-existence of the softwares under Unix. tlow-
ever, we have the possibility to embark all the soft-
wares in a near future : some are already ported under

VxWorks, and it is possible to use an on-board Spare
CPU under Sun-OS.

4Its chassis was built by VNII Transmach (S t Petersburg,
Russia)

6.2 Experiments

Figure 8: ADAM's natural environment

The figure 8 shows an illustrative image of ADAM's
natural environment; it is a 20 by 50 meters area, com-

posed of flat, sloppy, uneven rocky areas, and of big ob-
stacle rocks. The canonical task is "GoTo Landmark",

the environment being initially totally unknown. The

goal landmark is currently a 2D pattern detected and
localized in a luminance image. We have performed

several "reach that goal" experiments using only the

2D motion planner in the crossable zones, and a "dis-

covery" strategy. After a few "perceive - analyze -
plan" steps, (from 3 to 10, depending on the chosen

path) Adam reaches the target located at an approx-
imatively 30 meter distance from its starting point.
The whole processing time does not exceed half a

minute at each step, but due to the slow motion of

the robot (its maximum speed is 28 cm/s) and the
LR.F image acquisition time, ADAM takes generally
about 15 minutes to execute its mission.

We have also performed experiments using only the 3D

motion planner; for this sake, we have partially inte-

grated the following functions : fine terrain modeling,
localization procedures and 3D trajectory planning on
uneven terrain s

Figure 9 illustrates the position update and the terrain
model updating performed after the third acquisition :

the left figure shows the extracted features in the Lo-
cal Elevation Map, built from the third depth image ;
the right figure presents the corresponding correlated

points (and the correlation windows) in the current
Global Elevation Map. Figure 10 represents the new
Global Elevation Map after the robot position updat-

ing and the fusion.

5The computation time needed on a spare II Sun station to

build a Digital Elevation Map is about 2 see.; the localization
process takes about 3 see., and the 3D planning process needs
about 60 sec.
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Figure 9: Position updating : how to merge the new
LEM in the current GEM ?

Figure 10: The new GEM after localization and fusion

Figure 11 is a perspective view of the reconstructed
terrain on which the 3D trajectory of the robot has

been planned and executed after 5 incremental steps

(the grid discretization of the elevation map is 10 cm).
The concatenation of the different 3D trajectories

planned by ADAM to reach the goal is surimposed
to the terrain model.

7 Conclusion and Future Work

We have presented an integrated multi-level perception
system for an autonomous outdoor robot. This system

points out several different modeling services, and en-
hances a lot the robot autonomy and efficiency. An
ambitious experimental project, still under way, vali-

dates our adaptive approach and benefits to the devel-

opment of highly demanding robotic applications, in
particular planetary exploration.
A lot of difficult tasks have nevertheless still to be

achieved, among which we retain the followings :

* Besides the software complete integration of the

whole system (and especially of the fine modeling and
localization modules), each process performance needs

Figure 11: The GEM after 5 perceptions

to be improved and better validated. Feedback pro-
vided by the real data gathered during the experiments
is here an essential information.

* The integration of a stereovision correlation algo-

rithm would enhance the perception capabilities, by
providing dense 3D and color data on a particular area.
We could then address natural landmark recognition,

and estimate the physical nature of the soil during the
classification procedure.

. We currently only experimented the 2D navigation

mode and the 3D navigation mode apart. Mixing both
modes with a reflex one requires the development of
"smart" navigation strategies. This topic needs par-
ticularly to be better formalized and tested ; the idea

of developing exploration strategies in a topological

connection graph whose arcs are valued with a cer-

tain confidence, while having the possibility of raising
up this confidence (by acquiring data), appears to be

promising.

• Memory management and consistency management

of the models is a bottleneck to the execution of very
long missions. The "sliding bitmap" concept we briefly

presented has to be implemented and tested.

• Finally, improving the robot speed is fundamental,

if not vital. The robot computing capacities should be
better exploited, by implementing a kind of "pipeline"
architecture.
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